
AD-A125 013 THEORETICAL ISSUES IN SOFTWARE ENGINEERING(U) PRATT AND I/1
WHITNEY AIRCRAFT GROUP WEST PALM BEACH FL D HAMLET
SEP 82 AFOSR-TR-83-0038 F49620-80-C-0004

UNCLASSIFIED F/G 9/2 NI L

EE EEEI

IU K128 2 5
liii-

LW I J2L3

11111.25 11114111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

W e.m- 83.0088/1.

s ELECTE!I
FBB2 8 1983D

DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF MELBOURNE

83 0 028 030

U41CLASSlI ED
SECUQU'Y CLAISIPICATION Of THIS PAGE (W*t., ')ste Entered)

REPORT DOCUME Wa... ...o PAGE EA INSOMPLTIGOS

I REPOR
T

MU72 ER OTACCESSION NO. 3. RECIPIENT'S CATALOG NUMBERFI (FOS-TR. 83-as0 0~ IAD-A/'kf /13
4. TITLE (mid Subtlea.) S. TYPE OF REPORT A PERIOD COVERED

THEORETICAL ISSUES IN SOFTWARE ENGINEERING TECHNICAL

6. PERFORMING ORG. REPORT NUMBERti

7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(s)

Dick Hamlet* F49620-80-C-0004

C.--- --- DRESS 10. PROGRAM ELEMENT. PROJECT, TASK
-c4*1n,/ eS C() AREA & WORK UNIT NUMBERS

(12. REPORT DATE

Mathematical & Information Sciences Directorate September 1982
Air Force Office of Scientific Research 13. NUMBER OF PAGES

Boiling AFB DC 20332 28
14. MONITORING AGENCY NAME & AIDDRESS~If dIfferent from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15s. DECL ASSI FI CATION'DOWNGRADING

SCHEDULE

t6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different fromt Report) m

to. SUPPLEMENTARY NOTES .i

19 KEY WORDS (Continue on reerse side ff necessary and identifly by block number)

20. ABSTRD.CT (Continue on rvrse side if necessary and Identify bY block number) .
The discipline of software engineering has transferred the common-sense methods
of good programming and management to large software projects. It has been less
successful in acquiring a solid theoretical foundation for these methods. The
software development process has been divided into phases, each separating
itself from programming some aspect for independent consideration. The division
itself has no justification save practice that has evolved for large, concur-
rently processed programs. Furthermore, each phase needs formal description
and analysis. The author briefly describes the discipline, gives its (CONT.)

D JA7 1473 UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE (*Noen Dots Entered,

- __ =T 77 =7

4 MM! .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGI(Uhi Date Soer"e)

ITEM #20, CONTINUED: existing theoretical basis, and lists somte problemis that.

need theoretical work.

NCLASIFIED
Beuomv P.C4APKTeW OFTHS PAOS(t6i' DO &Whn

THEORETICAL ISSUES IN SOFTWARE ENGINEERING

Dick Hamlet+

Technical Report 82/8
* September, 1982

Department of Computer Science
University of Melbourne
Parkville, Victoria 3052 S E CAustralia ELECTE

S G FEB281983

Abstract B

Me discipline of software engineering has transferred the common-sense
methods of good programing and management to large software projects. It has
been less successful In acquiring a solid theoretical foundation for these
methods. The software development process has been divided Into phases, each
separating from programing some aspect for independent consideration. The
division itself has no justification save practice that has evolved for large,
concurrently processed programs. Furthermore, each phase needs formal
description and analysis. " briefly deseribesAthe discipline, glves lts exist-
ing theoretical basis, and i0"? one problems that need theoretical work.

+On leave from Department of Computer Science, University of Maryland, College
Park, MD 20742, USA. This work was partially supported by the United States
Air Force Office of Scientific Research under grant F49620-8O-C-004.

A preliminary version of this report was presented at the Winter School in
Theoretical Computer Sclence, University of Queensland, St. Lucia, July, 1982.

"R FDR!-_ OM,?TrE ~SIrII SA~~(loNfTTCE &F CY XTO TICaFsrn
ThATMN Ao 1 nc~ i been review,d and is'

________to______ _ | Dptrbut:oll far .,.'St q .9$AW AR.19-1 2 .

[Jn la ota, toehUGal nt i. ,....u~ a U n........d t

1. Software Engineering

"Software engineering" Is the name given to the art of programing (and sur-
rounding activities) when art is to be replaced by a discipline using well de-
fined methods and formal skills. Software engineering is perhaps no more than
ten years old, and like most new disciplines its record Is mixed.

On the one hand, a great deal was learned about good programming practice
in the mid-1960s, and the spread of this knowledge beyond expert programmers
can be credited to software engineering. Since the first computers were built,
the problems set for them have required program solutions of great complexity.
Managing this complexity requires method and discipline, and software en-
gineering has supplied these, often from common sense or clever-programmer

origins. What is undeniable is that the large system projects of today (say a
real-time system of half a million lines of high-level code, created by 50
people over several years) could not be completed without so-called "modern
programming practices." The transfer of knowledge to routinely trained techni-
cians, the codification of common sense, and the introduction of management
control are certainly functions proper to engineering, and software engineer-
ing has done these things for programming.

The success and growth of an engineering discipline has never rested en-
tirely on organization of trial-and-error knowledge, however. Application of
deep theoretical results Is also required to progress beyond the initial suc-
cess that spreading common sense brings. Historical examples in electrical
engineering are particularly revealing. Early electrical experimenters are
unmatched (Faraday and Edison come Immediately to mind), yet their skill could
not cope with the problems they themselves discovered. After a certain point,
electrical engineering could progress only by applying deep results from phy-
sics and mathematics. The role of the engineer Is sometimes to invent the re-
quired theory; more often it Is only to apply an idea from a more abstract

discipline to a problem the engineer knows intimately, where he is able to see
the application as the theoretician does not. Furthermore, the application
must meet a requirement peculiar to engineering: it must be in a form that
can be routinely used to solve practical problems. Here Heavyside's use of
"complex frequency" transformations to solve circuit problems is an example
that may remain forever unmatched. The theory is difficult, but with prepared
tables and undergraduate training, most people can solve problems that would
have defeated Maxwell.

1.1 Role of Mathematics

Software engineering has not done very well in finding and applying theoreti-
cal work to its problems. The fault has two obvious causes: (1) a new discip-
line takes time to develop; (2) software is so much a creation of the human
mind that no hard-science results seem to apply. Only the second point
deserves comment. What other, more abstract disciplines underlie software en-
gineering? Certainly mathematics, but not physical science. Psychology and
sociology play a role, but they themselves look to mathematics for theoretical
backing. The mathematical fields most relevant to software engineering are
logic, algebra, and probability. Three models for creating the appropriate
theoretical foundations may be described as follows:

(Prevention) Everyone should know quite a lot of conventional mathemat-
lo, because it trains the mind and perhaps It may be applicable later.
No attempt to provide applications, or prune the theory to the essential
is appropriate In this view. It is often the basis for university

computer-science courses.

(Pure) Mathematical theories have a life of their own, and some areas are
obviously relevant to computer science, so work In those areas should be
undertaken. When questions arise about what is to be pursued, the choice
should be made on conventional mathematical grounds of depth and elegance.
The deepest results come from people holding this view.

(Applied) Starting with a problem and using whatever mathematical ideas
are appropriate, a solution to the problem in abstract terms is sought.
The applied approach differs from the pure In that decisions about direc-
tion are dictated by the problem to be solved, not the quality of the
mathematics. As a result, the mathematics is often shallow.

If there is a bias in this paper, it is in favor of the applied view. and

against the prevention view.

1.2 The Software Life Cycle

The subject of software engineering is defined by the so-called life cycle of
a program 1]. The division into phases of a cycle Is intended to divide the
programming problem so that the parts have distinct goals. (This division is
not universally accepted--see Section 1.3 for an alternative view.) Associated
with each phase is a tangible "product." The existence of products is impor-
tant because it provides a focus for discussion of a phase, and the product is
often a subject of research. The phases are: Requirements, Specification,
Design, Coding, Testing, and Maintenance. We give brief descriptions and a
running example:

Requirements (2J

A problem to be solved by programming begins in the minds of people as an
idea that something is to be done using a computer. These people pose the
problem, but intend to have others solve it. They are presumed to be expert
in the problem subject, but not necessarily in computing. Furthermore, since
the solution has yet to be realized, Its form may be less clear in their minds
than is the problem. The statement of requirements Is expressed In English or
some other natural language, making use of technical terms in the problem
area. It is precise in describing the problem context, less precise in iso-
lating the problem, and perhaps very fuzzy about the required solution.

For example, consider the problem of automatic inventory control for a
manufacturer. The managers can describe their Inventory very well: it con-
sists of such-and-such materials, stored in such-and-such locations, tran-
sported In this way, obtained from certain sources of supply with certain de-
lays, and utilized in a process that is understood in exact detail. The in-
ventory problem is that unless care Is taken with every factor, materials may
run short or long, causing expensive disruptions. (The problem definition is
less precise than that of the Inventory Itself-hard definitions are lacking.)
Computers manage information, so one might be used to solve this problem, say
by preparing timely reports for the attention of those who obtain and use ma-
terials. Just what these reports should be, and what constitutes "timely" are
vague. The managers can judge the success of a computer solution--it will or
will not eliminate the disruptions that are believed to be caused by poor in-
ventory control-but they cannot capture the character of a successful solu-
tion.

The situation in requirements is aptly described by the aphorism "the end
user knows what he has, but not what he wants." It Is In the nature of re-
quirements to change as proposed problem definitions and solutions become

2

available.

Specifloations [3]

Specifications can be thought of as requirements made prealse as to the
existing problem and a proposed solution. More important than the precision
is the change in viewpoint: a specification is done by those who intend to
solve the problem, as the first step In that solution. Specifications are
truly separate from the phases that follow only if they are restricted to
describing what the problem and solution are, not how they come about. Be-
cause people seem to think best about complex situations In terms of actions.
sticking to the "what" can be very difficult.

Formal languages enter the picture at the time of specification. These
languages are sometimes described as "non-procedural" or "declarative" to in-
dicate that they do not give algorithms, but merely describe properties of
solutions. One way to abstract and sharpen the idea of specification is to
limit it to "Input-output behavior." Thus inputs which will be presented to
the computer program are described, each with its corresponding desired out-
put.

In the example of inventory control, a specification might define the re-
quired inputs as daily transactions, listing each item bought, sold, or moved,
and further define a "state" of values of all possible items against which
these transactions are to be made. Here the formal language required is
perhaps no more than set theory, where the material items are the set members.
Secondly, the detailed format of each report to be prepared, and the sequence
of issue relative to the occurrence of transactions, would be defined. Here a
more complex descriptive mechanism, perhaps that of the context-free genera-
tive grammar, might be required. The desired relationship between the input
transactions (in some Initial state) and the resulting reports might be
described by first-order predicate logic: assertions could be written in
variables representing the values of material items, to relate the transaction
values to those appearing in the reports, and to characterize as predicates
situations in which a report Is required.

Design [4.55]

The design phase begins to supply the "how" of the problem solution. Its
primary purpose Is to divide the solution into pieces, each of which can be
realized as a self-contained program unit. (Although the word is much
misused, these pieces of program are called "modules.") Dividing the problem
in this way has the twofold purpose of Intellectual control, and the utiliza-
tion of many programmers simultaneously. Decisions about the programming
language(s) to be used, the computers involved, and the basic organization of
the program (for example whether It will run as a unit, In a series of over-
lays, or as a collection of cooperating processes) must be made before the
division into modules.

Formal design languages (the abbreviation "PDL" Is used, the "P" for
"problem" or "program") are often like conventional procedural programing
languages except that data structures and actions within programs are allowed
to be commentary. PDLs may thus be thought of as poorly defined high-level
programming languages. (However, insofar as a PDL is precisely defined, its
use may overlap with the coding phase of the life cycle to follow, and be un-
satisfactory in separating problem division from the plecewise implementa-

* tion.) Other design aids are usually graphical in nature, including multi-
level flowcharts, module-relationship diagrams, etc. []

In the inventory-control example, the design might be for a batch comput-
Dis t ri I ut Ion /

Av-'h,1'lty Codes

-lli and/or

Di..t precial

* igthe state of the inventory (the actual
disk-resident structures are part of the design, perhaps In a special
language). The transactlon-processing program would update the database, and
might be divided Into an lnput-classifying module, an updating module, and
utilities to manipulate the files. Each of these might be described In a
series of flowcharts. Each report would be prepared by a separate program.
these programs to be scheduled at the completion of each transaction cycle
depending on the state of the database. Report generators would share utility
modules with the transaction program, but their main components would be for-
matting modules peculiar to each report.

Coding

The module descriptions of the design, along with detailed interface in-
formation, are in a form suitable for distribution to programming teams. The
programmers need not understand requirements, specifications, nor overall
design, but only realize limited objectives module-by-module.

All the traditional formalism of programming enters the life cycle in the
coding phase. Conventional, efficient programing languages are processed by
conventional compilers.

The Inventory control modules might be written in assembler for the file
utilities, in COBOL for the Input classification module, and in a report-
generation language. These program units would be linked together to form the
transaction and report programs.

Testing [6]

Software testing can be a complicated phase with many subphases, if the
software itself is complex. In the simplest case testing is divided into
"unit" and "Integration" parts. Unit testing involves only single modules,
and is typically done by the programmers to convince themselves that each
module performs as it should. Integration testing is conducted on collections
of modules, often complete programs. Of course, only running programs can be
tested at all, so part of the testing process may be the construction of
"driver" and "stub" modules that allow incomplete collections to be executed.
Unit testing depends on the peculiarities of each module, and cannot be
planned for out of the serial sequence of the software life cycle; however, an
integration test can be devised in detail as soon as the specifications are
available. Integration "test plans" are therefore sometimes begun in parallel
with the specification phase. Where a software system is extremely complex,
its Integration test may be divided Into phases called "functional" (in which
various requirements are tried to sie If they work as specified), and "system"
(in which stress is applied to the system In the form of extreme values and
loadings, in which variations In target-computer configurations are tried,
etc.).

The early parts of a program test have a lot in common with debugging, and
support systems have grown up for each language. However, in the later stages
of testing, the tester is stking not errors, but confidence that when no er-
rors are found it means that none exist. The only known scheme for obtaining
this confidence is to "exercise" the program code, making sure that each
statement, expression, control branch, etc., Is used in some test.

Following unit test of the modules of the imagined inventory-control pro-
gram (which would require a simulation of the database utilities as stubs),
the various programs can be tried, for example by generating a report with a
certain database, then applying simple transactions, and repeating the re-
ports, which should show the appropriate changes.

4

Maintenance [7]

As soon as a software system Is delivered to its users, it requires
changes, for two reasons: it contains bugs, that is, it does not do what it
claims to; and, it has been constructed to do the wrong thing. Bugs are an
Inevitable consequence of the complexity of computer-handled problems and
their programs; failures of intent arise naturally from imprecise require-
ments: the end user did not know what he wanted, but experimentation with the
finished program quickly shows it was not that. Bugs might be thought to
enter only in design and coding, but specifications and even requirements can
be at fault-they can call for inconsistent results that cannot be realized;
of course, testing has failed to uncover any bugs that remain on delivery.
Solving the wrong problem evidently calls for beginning again. However, in
practice, the product of the entire cycle is the executable code, and it is
common practice to change only that. The result is that requirements, specif-
ications, design, and test plans are rendered useless by code changes that
they do not reflect. These products were thought necessary to create the code
in the first place, but with the code in hand, they are frequently discarded.

It Is all too easy to imagine the dissatisfaction of a manufacturer with
the delivery of the batch transaction system of our running example, when he
discovers that batch processing introduces too much time delay and the reports
fail to prevent inventory shortages. The managers then realize that what they
really need is an on-line system in which all materials changes are entered as
they take place, and exception reports generated immediately. No sooner would
such a system be delivered than they discover that a real-time inquiry capa-
bility is essential, and so on.

1.3 An Alternate View of Software Engineering

The software life cycle was created by splitting phases from coding wherever
possible. For example, the design phase isolates the division of code into
modules. The product of each phase is created from the information contained
in earlier phases (in strict sequence with the exception of some test plans),
but is to be evaluated using its own internal criteria. For example, specifi-
cation relies on requirements for information, but calls for precision and a
non-operational character. Coding is thus singled out as primary. It has a
natural existence that all other phases lack, it has the most precise, well
developed product, ard the compromises of practical maintenance show that it
alone matters when push comes to shove.

There is a dissenting view of software engineering which has its source in
the primality of code. In this view, the splitting of software development
into phases introduces more problems than it solves. In particular, the very
different products of each phase and the different formalisms thus called into
being, seem inferior to a single product and a uniform formal treatment. In
this view what is needed is a language which has the precision of a conven-
tional programing language, in particular which can be mechanically executed,
but whose character makes it appropriate for specifications or even require-
ments. The argument is that were such a language used, there would be no need
to split off concerns around coding: the code would be its own specification,
correct by definition, requiring no test. The problem of users not knowing
what they want would remain, but the cycle of adaptation to change would be
shortened, and the product maintained would be the one developed. It would
still be possible to separate phases for study and development, but this would
be done by processing the single code product in different ways.

The alternate view is attractive, its sole drawback being that with it a
software problem must be solved in a single thrust, not broken into five parts
for solution. The intellectual economy realized, however, might pay off for

5

medium-scale problems. (Small-scale problems seem to require nothing more
than progrmming-any method seems to work In competent hands.) This paper
takes the conventional life-cycle view, but tries to discuss the issues of a
single software-engineerinS language under "specification" In Section 2.3.

2. Theoretical Issues

Research in software engineering has naturally focused on the product X of
each phase, to explore how X can be improved. This focus is successful partly
because the phases have distinct goals. Even the dissenting view that the
life cycle should be collapsed to a single programming phase can be fitted
into this mould, by adding to the specification phase the requirement that its
language must be compiled and executed.

2.1 Programming Language Theory

The model of a proper relationship between theory and practice occurs in the
coding phase of the software life cycle. Here the product is a computer pro-
gram, and the formal abstraction is the programming language from which it is
drawn. Programming languages have their origin in practice and experimenta-
tion. For example, the variants of IAL developed in the 1950s are in most
ways the equal of any language in existence today, and they came directly from
the Idea of the stored program and some simple mathematical analogies.
(Indeed there exists a tradition of devising programming languages without any
reference to existing mathematics--reinventing formalism as needed--that pro-
duced ALGOL 60 and ALGOL 68.) The role of theory in programming languages has
been to explain and clarify rather than to prescribe language features.

For syntax, theory has been spectacularly successful. Regular expressions
and context-free grammars are marvelous devices for describing and understand-
Ing sets of strings over an alphabet, and they are furthermore easy to teach
and learn. (It Is worth remembering how difficult the ALGOL 60 syntax was
considered when it first appeared, but this parallel can be overdrawn.) Se-
mantics of programming languages is more difficult than syntax, but there has
been some success here as well. The ALGOL 60 report [8) is unmatched In its
use of English to define programming language meaning (using two clever dev-
ices: equivalent programs and the copy rule), but the need for formal treat-
ment is apparent. Examples exist of both the pure and applied mathematical
approaches [9]. Operational semantics is applied. The formalism is shallow
and closely follows the practical problem of language implementation. It is
undeniably useful to the compiler writer, and in the understanding of arcane
language details, but unsatisfying as mathematics. Denotational semantics
combines the pure and "prevention" approaches. Its presentation makes no at-
tempt to avoid conventional mathematics that might be a barrier to the
uninitiated--for example lattice theory-and the theory often fails to il-
luminate the meaning of practical languages, but there is depth to its
results.

Parsing theory [10] does not easily fit Into one of the mathematical
categories. Parts of it are pure theory, not directed by applications, in-
cluding deep results (the relationship between the LR(1) and other languages
classes, for example). Parts are no more than fitting established compiler-
writing techniques into a formal framework (syntax-directed translation, for
example). And part seems simply unsuccessful (the LL(k) explanation of recur-
sive descent with lookahead, for example). It is unclear whether the
compiler-compilers based on table-driven models are an improvement over those
that arose from practice alone.

The problems of programming languages in the development of software are
ones of power and control. On the one hand, language features fitted to han-
dle difficult problems with ease are desirable; on the other, such features in
unexpected combination often lead to programs that do not work and cannot be
easily repaired. Language theory has not contributed muclh .o solving these
problems, nor is it likely to do so. There have been some attempts to equate
the ease or clarity of theoretical description with language quality, but
these are probably misguided. Some features of syntax are inherently non-
regular (parenthesis balancing, symmetric statement nesting); others are in-
herently non-context-free (matching of declaration and usage forms). That
these ideas are difficult to describe in otherwise-satisfying formalisms may
be relevant to philosophy, or a comment on the formalisms, but has little sig-
nificance for language design. Similarly, some language features have diffi-
cult denotational explanations (variables, transfers, exception handling);
but, these features may still be useful and important.

2.2 Software Engineering Problems--Outer Phases

ecause programming itself is the best understood part of the software
development cycle, yet farthest from software users, the outstanding problems
of software engineering grow less precise and more important as they occur in
phases more widely separated from coding. The problems of design and testing
are technical and difficult, but their complete solution would be less impor-
tant than a beginning maintenance or requirements/specification theory, where
technical precision is lacking.

Requirements/specification interface.

Between the requirements phase and the specification phase, people who
have a problem turn it over to those who hope to solve it. When they do so,
the communication is less than perfect, and because software professionals
work with formal, technical ideas, there is little feedback after the turn-
over. The software system that develops may be wrong from the outset, but the
people who requested it have no way of knowing this until it is delivered.
The requirements/specification problem is thus one of finding a way to keep
the nontechnical user informed as the technical development proceeds. Perhaps
this is largely a problem in psychology or sociology, but it has some techni-
cal aspects. The only reason that the software user knows of failure is by
trial. It has therefore been proposed that a means of "rapid prototyping"
011] or simulation be employed throughout the development process. As each
decision is made, it should be communicated to the user in the form of a sys-
tem that can be tried. These simulated or prototype systems must be cheap and
easy to produce, and they must accurately reflect the technical development,
but their efficient use of computer resources is less important.

Rapid prototyping raises two recurrent themes in software engineering.
The first theme is that of language execution by machine. If a specification
is "executable," particularly in a partially completed state, it can support
feedback to the user. The second theme is that of finite support for infinite
objects. When a user tries a prototype or delivered system, he necessarily
chooses only a few of the many cases that the system might process. If these
cases are "representative" they give an accurate picture; but, how can good
cases be selected? The same question arises during the test phase of develop-
ment. Thus the apparently vague but Important questions of how to improve
user/technician communication can be translated into technical questions in
the specification and testing phases.

Maintenance

A second Important software engineering problem occurs at the end of the

i.

cycle. Delivered software usually fails to meet requirements. Its deficien-
cies range from simple malfunctions that escaped detection to "leatures" that
are Just what the users do not need, or inability to handle parts of the prob-
lem at all. The conventional view of software maintenance is that it is a
development cycle in miniature, including all the phases from requirements
analysis to testing. This view ignores the primary fact about practical
maintenance: it is supposed to be far faster and cheaper than repeating the
full devolopment process. Because a complex system has a complex specifica-
tion, design, etc., even small changes cannot be introduced without extensive
study of the original, which may be literally more difficult that recreating
it from scratch. (A second important characteristic of real maintenance is
that it is seldom undertaken by the people responsible for original develop-
ment.)

The division of software into modules is the key to maintenance (123, if
the interconnection allows some to be changed without understanding the oth-
ers, and if changes involve only a few modules. Once a proper decomposition
of the system has been made, it is evident that the intermodule independence
must be maintained, and there are good techniques for mechanically controlling
the extraneous linking of modules, notably the principle of "information hid-
Ing" as implemented by an abstract data type. However, there is no theory to
guide the original division, and information hiding is actually counterproduc-
tive when the modules divide the problem badly. If changes can be anticipat-
ed, the designer can think about them in modularizing the system; what is
needed is a theory of change to deal with the more common case of unexpected
changes.

An ideal software system, from the point of view of maintenance, would
have the properties that:

(1) The product of each phase is broken into a number of elements that
can be independently analyzed; and

(2) A change within an element in one phase of the cycle results in
changes confined to an element of the succeeding phase.

Sometimes this property is called "traceability;" it has received very little
formal investigation. Not the least important example is that changes in a
code module should not require repeating tests outside that module.

Although there is no evidence beyond wishful thinking, one might expect
the problems of controlling change to be easier than those of development in
general. If a system has been proved to have some property, and a change is
made, a proof that the modified system retains that property should be easier
than the original. One might even hope that for circumscribed changes, modif-
ications made by hand in (say) specifications could be automatically (and
correctly) reflected in the design, code, etc.

2.4 Software Engineering Problems-Specification

Formal programming languages were once only a human-computer communication
device, but their usefulness for the description and discussion of algorithms
soon became apparent. The benefits of a formal-language treatment are that
formal objects can be analyzed, and that time spent casting an idea into pre-
cise form pays off in sharpening that idea. The goals of specification are
now clear enough to permit investigation of formal specification languages.
Specification "programs" should describe what a computer program is meant to
do, and they should be complete, consistent, and effective.

Completeness of a specification intuitively means that its description of

8

what is to be done has no missing parts. The most general form of this idea
involves human intent, since one person might consider it necessary to con-
strain the program in a way that another person would not. A particularly
difficult question is: might a complete specification permit multiple output
values for the same input? If a specification provides no constraint on the
output associated with some input, then all results are equally acceptable;
yet, it is an intuitive incompleteness that permits this to happen.

The intuitive meaning of a consistent specification is that there must not
be multiple, contradictory descriptions of what is to be done under the same
circumstances.

Completeness and consistency are examples of properties that might be
proved for a given specification, and such proofs are themselves an important
aspect of the form specifications take. A method of specification is good if
it facilitates such proofs.

An effective specification is one that can serve as an oracle: it can be
used to decide of any given input and proposed output, whether or not the pair
is acceptable. A stronger requirement is executability, in which a specifica-
tion is able to stand in for the program that meets it: the specification can
"compute" output values from inputs in some way. Of course, an executable
specification is effective, but not the other way around.

A better discussion of specification-phase issues is possible for particu-
lar proposed methods, of which three will now be considered: logic-based,
algebraic, and operational.

Logic-based Specification Languages (13]

First-order predicate logic has the power to describe any problem that

has an algorithmic solution, and may be the most natural language for the
task. The form of specifications in logic follows the Floyd-Hoare correctness
theory: two assertions are given, one describing assumed properties of in-
puts, the other describing required properties of outputs. Call these input
and output assertions P and 0 respectively. For simplicity, suppose that
P contains exactly one free variable x (the input), and Q contains x

and a distinct y (the output) free. As usual, write P(c) to mean that c
replaces x in P , and similarly write Q(c,b) . The specification itself
is as follows:

The program specified is to process any input u satisfying P(u) so as
to produce an output v satisfying Q(u,v)

That is, the program is to be totally correct with respect to these asser-
tions.

A specification is consistent just in case for each input satisfying P
some output satisfies Q . That is,

Vx (P(x) ==> 4y Q(x,y)).

The intuitive justification for this definition is that if the specification
should indicate contradictory properties for the output on some input u
then no v could satisfy Q(u,v)

In the most general form, a specification is complete just in case the
person devising It agrees with what can be derived from it. Formally, the
person should approve of each theorem of the form

9

Vx,y (P(x) /\ Q(xy) u,> R(x,y))

for arbitrary assertions R . The narrow requirement that there be at most
one output for each acceptable input is:

)x,t,u (P(x) /\ Q(x,t) /\ Q(x,u) ==> t = u).

The narrow completeness condition implies that there is a function f
mapping objects satisfying P onto objects satisfying Q . If there is to be
a program for f , it is further required that f be computable. That is,
the specified program must compute f such that

f = ((x,y) 1 P(x) ::> Q(y)).

The consistency requirement is precisely that

Ix 1 P(x)) c domain f.

First-order logic specifications lend themselves to proofs of completeness
and consistency, and other such properties that are concerned with the inter-
nal relationships of the specification. An important application is in the
specification of so-called "secure" systems. Here a core of some problem is
identified as sensitive, to be protected against intrusion, and the planners
wish to be certain that they have thought of all possibilities that might con-
stitute violations of this core. The necessary properties in addition to con-
sistency and completeness have just the character that they are easily stated
in first-order terms, as invariants i%: addition to the input-output assertions
P and Q . Furthermore, such applications are considered so important that
the high cost of mechanical theorem proving is acceptable [14].

A specification is effective in the strongest intuitive sense if there is
an algorithm that decides the truth of both

P(c) ==> Q(c,d)

and

P(c) itself

for all constants c and d . Such an algorithm would distinguish three
cases: (1) P(c) does not hold, hence the input c is unacceptable; (2) Pc)
holds and Q(c,d) holds, hence the pair (c,d) should be in the graph of the
relation specified; and (3) P(c) holds and Q(c,d) does not, hence the pair
(c,d) should not be in the graph. In a less stringent view, a specification
is effective just in case an algorithm exists to decide

P(c) ==> Q(c,d)

alone. In case the formula holds, the algorithm need not further decide
whether this is only because of a counterfactual hypothesis. Using this de-
finition the algorithm could certify a pair as being in the graph of the
specified relation when in fact the input was unacceptable.

These alternative definitions differ when P itself is undecidable; then
the specification cannot be effective according to the more stringent view,
but might be according to the weaker one. There is something unreasonable
about specifications for programs where the input must satisfy an ndecidable
proposition, perhaps because Intuition says programs should be abl4 to check

10

for valid input. An Input-checking program has an input assertion of 'true',

and invalid inputs are distinguished
by an error output described by Q . In

this case the two definitions coincide.

No matter which notion of effective we choose, logic specifications are
not in general effective, and recognition of an effective one is itself an un-
solvable problem. Furthermore, it is not even possible to decide if a given
specification is for a computable function. If the input assertion is reduced
to 'true' the latter problem includes deciding whether or not a total function
has been specified.

A logic specification is executable iff there is an algorithm for obtain-
Ing d such that Q(cd) holds, for all c such that P(c) . Here it is
evidently correct to omit the P(c) decision from the algorithm, since the
specified program itself does not have to carry out the calculation of P . It
seems unreasonable, however, to "execute" a specification for an invalid input
by producing some arbitrary result, and this is reflected in the anomaly that
a specification could be executable, yet not effective according to the more
stringent definition. The best resolution of these definitional conflicts
seems to be to take the more stringent definition of effective, but confine it
to the case that P is decidable.

Execution of a logic specification in general requires a search of the
space over which the second argument to Q ranges. Some proof techniques
when applied to

4y (P(c) =:> Q(c.y))

for constant c will yield a value y satisfying the formula as a part of
the proof, but they produce an arbitrary value for y in the case that P(c)
is false.

In attempting to establish a special Case of effectiveness with a theorem
prover, that is, to prove or disprove

P(c) ==> Q(c,d)

with constant c, d , the same problem can arise, because the formulas may
contain internal quantification, whose satisfaction again requires some form
of search.

There is a general response to the occurrence of an unsolvable problem in
practical situations--to restrict the discussion to a subset of the original
situation where the problem can be solved. There is necessarily a loss of
generality, because it is typical of these problems that identifying the un-
desirable cases is itself unsolvable. Therefore one must expect to give up a
bit of baby in return for getting rid of the bath water. In fact, the only
restriction attempted so far is the trivial one to finite domain. If in the
output assertion Q all bound variables are restricted to finite sets, then a
specification is effective, and efficiently so (say) by a proof method based
on analytical tableaux. If the range of the second argument to Q is also
finite, the specification is executable in the same way. The motivation for
this drastic restriction may come from the application to information re-
trieval, where an existing data base is finite, and logic specifications are
related to queries In which the quantifiers range only over the values already
inserted.

Evidently more research on restrictions designed to gain effectiveness and
executability of specifications is needed. A starting point for such research
might be existing languages which include "features" grafted onto a first-

11

order base [15], which are designed to gain efficiency In execution, but whose
theoretical significance Is unexplored. In a way such practical adjustments
to logic are the worst way to give specifications: although the form appears
mathematical, one cannot be sure what programs are in fact specified, except
themselves. The exeoutability they have gained is at the expense of preci-
sion.

Specification Languages Based on Algebraic Axioms [16]

Many of the "modules" into which a computer program is divided have the
character of providing a service function to other parts of the software. A
collection of entry points to the module are defined as parametrized opera-
tions of which it is capable; these operations map among sets of objects whose
values may be manipulated in no other way. That is, the module defines cer-
tain sets and operations on those sets, and must be used for access to them.
Since the late 1960s many programming languages (notably SIMULA 67, CLU [17],
and Ada) have provided support for such modules, and a design idea called "in-
formation hiding" has evolved to take advantage of modules' ability to keep
"secrets," releasing to the surrounding world only limited information about
how the internal sets and operations are implemented. The formal objects
corresponding to these encapsulating modules are called data abstractions.

Formally, a data abstraction has a syntax defined by a signature which
lists the set and operation names, and gives the latter domains and ranges
from the former. The semantics of this object is given by a collection of
algebraic axioms, equality assertions between pairs of terms using function
names of the signature, where universally quantified variables appear as atom-
ic terms. From the logical point of view the meaning of a data abstraction
can be given in the usual model-theoretic way. The set names are interpreted
as intuitive sets, and operation names as functions properly mapping among
those sets, according to the signature. Equality is the intuitive binary
predicate within each set. Some interpretations may be models for the axioms,
and In the most general view any model is a meaning for the data abstraction
whose signature it matches.

Herbrand, G8del, and Kleene used sets of equations [18) very similar to
the algebraic axioms of data abstractions, as a device for capturing intuitive
computability. Although the analogy has not been satisfactorily explored, it
appears that data abstractions could be studied as HGK equations in which only
certain natural numbers are allowed to appear, the allowed numbers being codes
for values in the sets of the signature. If the coding functions are recur-
sive the results of the theory should remain unchanged; this would restrict
what data abstractions are capable of specifying, but perhaps not in practical
Cases. As computing devices, HGK equations utilize numerals, syntactic stan-
dn3 for natural numbers defined Inductively starting with zero. The value of
a function f ksay 1-ary) whose name appears In a set of equations, given
numeral argument p , is numeral q iff

f(p) = q

can be derived from the usual properties of equality, the fact that successors
of equal numerals are equal, and substitution of any equation in the set with
all argument variables consistently replaced by numerals.

The more common formal view of a data abstraction Is as a heterogeneous
type algebra of constant words formed by composing the function names of the
signature beginning with 0-ary functions. The objects described are
congruence classes of the word algebra that satisfy the axioms. It is usual
to try to make a further restriction that selects a unique algebra from all
factor algebras defined by possible congruenoe relations. The most commonly

12

chosen factor algebra Is the initial algebra E19], of which all others are
homomorphic images. In the initial algebra, two words are equal (in one
congruence class) Just In case they can be proven so using the usual proper-
ties of equality and substitutivity In the axioms.

Another algebra is the final one [20). The functions of the signature are
divided into those whose range is the type being defined, and those whose
range is other (supposedly already defined) types. Call the latter distin-
guishing functions. Two words are equal In the final algebra Just in case
they can be proved equal, or no distinguishing function maps them to unequal
values. In many practical examples the congruence classes of the final alge-
bra are much larger than those of the initial algebra.

A data abstraction is thus a specification for a program expressed as an
encapsulated type in a language like CLU. It is possible to write implementa-

tions to these specifications without special language support, thereby giving
up some information-hiding features. The type (mode) construct of Pascal (AL-
GOL 68) suffices.

Any data-abstraction specification is consistent, because in the usual
algebraic way, "inconsistencies" simply mean that objects which appeared to be
distinct are not. Adding a "contradictory" axiom to an existing list can only
widen the congruence classes, making more words equal. In the extreme case, a
singleton set whose element is mapped to itself by all functions is a model.
Similarly, the unique Initial and final algebras always exist. Thus the most
"contradictory" set of axioms can at worst lead to a meaning more trivial than
intended. Hence the only kind of consistency involves a person's judgement
that the objects of the specified type are congruence classes of exactly the
right size.

The addition of axioms to a signature may permit equality proofs impossi-
ble without the added axioms. Since a person might consider a specification
intuitively Incomplete if words expected to be the same are not provably so,
completeness can be defined as a human being's agreement with the totality of
all equality proofs. The narrow idea that two results should not be possible
for the same input has no meaning for data abstractions. If no two words are
equal then there are no axioms, or only trivial ones; when there are nontrivi-
al axioms, some constant words will be equal, but their different appearance
does not make them "different results."

A data-abstraction specification can be effective in several different
senses. From the algebraic viewpoint, effectiveness amounts to the ability to
transform one name for an abstract object, the one in which each function ap-
plication explicitly appears, into another, simpler form. The desired canoni-
cal forms may be those In which application of the axioms has eliminated
redundant or cancelling function names; or, the canonical words may be re-
quired to use only a restricted set of function names, subject to further con-
straints. For example, in a signature for natural numbers, the canonical form
might be a sequence of applications of the successor function to zero. Then
the specification would be effective if there were an algorithm to answer all
questions like:

Is (0' + 0')' a 0'''?

Because questions of equality in both the initial and final algebras are de-
cided by the existence of proofs, data-abstraction specifications are not in
general effective. For some canonical forms and some axioms, it can happen
that a word is equal to no word In canonical form. In this case, the specifi-
cation Is usually called Incomplete.

13

Similarly, "exeoutability" from the algebraic viewpoint is the existence
of an algorithm to produce a canonical form for an arbitrary word. Thus a
specification is necessarily effective If is executable, and if it is incom-
plete it can be neither.

There is an attractive candidate for a general algorithm to execute data-
abstraction specifications: use the axioms as rewriting rules. Several com-
puter systms to aid in designing specifications use this algorithm [21, 22).
and have therefore generated interest In characteristic conditions for its
success, to identify those specifications on which the systems can be used.

The algebraic form of effectiveness ignores an abstraction's implemented
representation, however. In an implementation, the objects involved are not
constant words, but patterns of bits thought of as representing numbers,
strings, radar signals. etc. The questions of effectiveness and executability
of a specification involve these representations. For example, if a signature
set S is strings, and an operation m Maps S into S , while E is a
zero-ary map, then it is uninteresting that m applied to m(m(E)) is (say)

m(m(m(E))) z m(E)

in a canonical form where the least number of m operations appears. Rather,
one wants to know the result of applying m to (say) 'HELLO'.

The representation is not part of the specification, yet the ability of
the specification to act as an oracle depends on it, because the inputs and
outputs must be put into correspondence with the constant words. Because im-
plementations are done from intuitive understanding of the abstraction, and
because representations are seldom unique, the correspondence is onto an in-
tuitive model, and is many-one. The interpretation of the words into the same
model is then required to permit execution, and this mapping may only be given
for canonical words. In these circumstances, the effectiveness of the specif-
ication depends on these mappings. In the simplest example, let there be one
set S and operation m: S -> S . Let the mapping from implementation ob-
jects to a model be R , and from canonical constant words to the model be a
bijection I . The specification is effective if for any implementation ob-
ject x and y , It is possible to tell if

m(I-l(R(x))) I- y)),

a question that can be answered by a proof in the word algebra when 1-1 0 R
is effective. (The form

I (-1(x)))) R(y)

is less useful because the equality must be decided in the model, where proofs
are intuitive.) The specification Is executable if for any x it is possible
to find a y satisfying the formulas. The remarks about exhaustive search
for logic specifications thus apply with equal force to data-abstraction
specifications, but the latter are often effective.

The formalization of the mappings between implementation and abstraction,
and proper placement of these in one world or the other are theoretical prob-
lems in data abstraction. Another problem concerns the mismatch between these
worlds. The word algebras sem to capture exactly the sort of sets and opera-
tions in which invoking a module leaves no trace beyond the value returned.
That is, there Is no persistent Internal storage, and the parameters are
called by value. When perfectly natural (from the programming viewpoint) ex-
tensions are made to relax these restrictions, the algebras no longer
correspond to the implementations. One might expect that this situation could

1.i

be explored to find reasons why constructions such as call-by-reference are

unnatural from the algebraic viewpoint, or find algebraic models for them.

Operational Specification Languages [23]

Both data-abstraction and logic specifications have strong mathematical
roots, which may explain their strength on consistency and completeness (and
their weakness on executability). Operational specifications on the other
hand arise out of programming itself, and stress execution.

Specification was to separate from coding "what" is to be done, avoiding
"how." If a program is the specification it certainly goes well beyond
"what." The explanation offered by proponents of operational specification is
that their programs are natural for people solving problems, but inefficient
for computer implementation. Thus "very high level" specification languages
are an appropriate step prior to coding. Furthermore, it is argued, this pri-
or step is not design, since the operational specification is a "how," but not
one that can be actually used in the program.

Operational specification languages have many features based on experience
with the problem domains for which they are designed (and most are designed
for large, concurrently processed, real-time systems), and on tricks learned
from the psychology of conventional programming. Only a few of these features
have theoretical significance. We single out: (1) cooperation among
processes, (2) stepwise refinement.

The idea of a process arose in multiprogramming operating systems, where
several simultaneously active tasks had to communicate In a controlled way.
So-called "cooperating sequential processes" [24] then developed into a pro-
gramming technique in their own right, particularly for real-time systems
where independent routines are needed to handle time-critical functions, and
in multiprocessor systems, to take advantage of the possibility of concurrent
execution. A process is most easily imagined as a complete program, whose ex-
ecution is not quite self-contained. At some points its computation is con-
nected with the computations of other programs, and the ensemble behavior is
crucial to the intended operation. The collection of processes that make up a
system can of course be described without reference to this internal struc-
ture, since the behavior of the system transforms Input to output in the usual
way. But if the inputs and outputs can be naturally grouped in some way, it
makes sense to separate the program into parts that handle each group, and
these are the processes of an operational specification. The connections
between processes take many forms; the most common is a message-passing facil-
ity with the ability to test for (or await in some way) an incoming message.
Some operational specification languages impose a further structure on
processes, insisting that (except for the communication) they be very simple,
perhaps finite-state-like programs, often required to operate in an indefinite
repetitive cycle. The power lost within each process is gained back through
their communication.

Step-w1se refinement is a programming technique invented in the early
1960s, and more recently given academic respectability [25]. In it a program
is organized Into procedures so that Its operation can be understood in a
series of levels. At the top level there is a single procedure, whose body
uses a few complex data types and very little control logic, calling on other
procedures when the necessary processing becomes complex. These procedures in
turn use simpler data types and Invoke yet other procedures, until at the bot-
tom level the procedures use only basic data types, and Invoke no other pro-
cedures. An understanding can be gained at any level by Ignoring procedures
at lower levels, taking calls on them to have the effect suggested by commen-
tary at the upper level, and taking data types there as properly implemented

15

elsewhere. (The role of data structures in this technique is less well under-
stood than the role of procedures, since the type-defining mechanisms are much
more recent.)

Some operational specification languages E26, 23J use step-wise refinement
ideas so that the specification is given only at the upper levels. Thus some
procedures and data types are left formally undefined. This is part of a
specification method that parallels the program-development method, but it has
implications for executability as well. When the specification has been
worked out only at a high level, It can still be tested if values can be sup-
plied for the missing objects. People can do this, or if the sets from which
values should come are known, random selection can be used to generate missing
values. Using a specification language in this partially defined way makes it
useful for the requirements phase, since the technical decisions being taken
at each level can be communicated to the user in the form of tests. In a
sense, these test executions are new objects deserving some formal study, be-
cause they are examples of program meaning that mirror its static structure.
At the top level the processing is precise, while at the bottom it is fuzzy.

If the programs of operational specification languages had the same pro-
perties as conventional programs, their specifications would be consistent in
the sense that a well-defined semantics for programs gives a functional mean-
ing. Such specifications would be effective (indeed, executable) in the
strong sense that the language definition provides a means of working out the
output from any input, subject to the problem of halting. Hence the effec-
tiveness would be uniform over all specifications. Completeness has to do
with the domain of the specification program: If that domain agrees with what
a person intended, the specification is complete. Thus if specification pro-
grams were conventional, only difficulties with halting could keep them from
being consistent, complete, and executable. The introduction of concurrent
cooperation changes this picture completely, but to discuss the more complex
situation we must take a particular operational specification language.

As a straw-man language, let us imagine that each process is a finite-
state transducer, modified so as to communicate with other processes. Add a
new class of states whose symbols come not from the input, but from another
transducer, and yet another state class whose outputs go to another transduc-
er. This communication takes place as follows: any interprocess output pro-
duced is appended to a communications strin , and interprocess inputs are ob-
tained from the beginning of this string. The difference between a collection
of such transducers and conventional ones is that the input (and the communi-
cations string) are thought of as dynamic objects. Should any process call
for input when the necessary string is empty, that process simply waits until
there is a symbol available. Should several processes be waiting, any of them
may consume a newly available symbol.

This language Isn't very like actual specification languages, but it exhi-
bits all the features we want to discuss. In It, programs can be written so
that they cooperate in a perfectly deterministic way, synchronized so that the
pattern of which machine is active is controlled at all times. It is also
possible to write programs that "deadlock." Deadlock Is defined as a situation
In which all processes are in an interprocess input state, and the communica-
tion string Is empty. This situation will then persist. The cases In between
are the ones of interest: the pattern of machine activation has many possi-
bilities, but none of these lead to deadlock, and the overall Input-output
behavior of the system Is the speolficatlon. In the sequel, "operational
specification" will refer to programs written in this language.

Such operational specifications are no longer necessarily consistent. It
can happen that several processes compete for an input or communications-

16

string symbol, and depending on which obtains It, the input-output results
differ. (In the jargon, the programs are "non-deterministic.") It seems rea-
sonable to define consistency of a specification as the impossibility of this
happening; that is, for each Input, the same output must appear no matter
which choices are made about dispersing Input or communications-string sym-
bols, and no matter at what speed the Input string appears relative to pro-
cessing. For a given Input, consistency can be checked by trying all the se-
quences, but In practice the task Is combinatorically intractable, and proof
methods for concurrent systems are not well developed. Properties of opera-
tional specifications are usually tested Instead of proved, but since a test
may fail to investigate many of the potential activation-sequence alterna-
tives, Its result may be misleading. Indeed, the possibility of an incon-
sistent specification throws doubt on effectiveness itself: when the specifi-
cation serves as an oracle, It may be delivering only one of several possible
results.

A specification that deadlocked on some but not all activation sequences
would be inconsistent; but If all sequences deadlock for some input it is
still deficient, and perhaps it is appropriate to call it "incomplete." The
valid inputs to be initial sequences of other, valid inputs, and there is no

way to cause the specification to be "undefined" on the former and not the
latter.

Successful analysis of operational specifications depends on understanding
nondetermlnism. In this the relationship between individual-process behavior
and whole-system behavi- seems to be crucial: sufficiently drastic local con-
straints might make the global analysis possible. However, there is a paradox
here: If processes with simple behavior are combined, the composite behavior
will be unlike its components [27J. The arbitrary combination of processes
does not create another process, but something more complex. Yet the funda-
mental analysis technique is decomposition of a structure into substructures
that share its properties. Perhaps It will be necessary to have two communi-
cation mechanisms, one that preserves severe restrictions on process behavior
and a more general mechanism, the latter to be used only at the top level.

2.4 Software Engineering Problems-Testing

A requirement that specifications (or requirements) be executable raises the
testing problem even In the early phases of software development; certainly it
occurs in design, coding, and maintenance. That problem is intuitively the
following: since tests are by their nature mechanical, involving computers
rather than people, how can the (small) finite number of tests it is possible
to conduct be assessed as predictions about all future usage of the software?
In requirements this question takes the form of the significance of the few
cases a user tries to convince himself that a specification is what he wants;
In operational specifications It takes the form of confidence that all se-
quences of process Interactions are understood when a few have been tried; in
maintenance there is the hope that a small change can be certified by a test.
For the design and coding phases, an effective specification serves as oracle,
and when execution produces correct results in a few cases, we want to con-
clude that the software is correct.

Reliability [28J

Practical testing is an error-finding process. A good test uncovers something
wrong. At the level of a progrmtng-longuage procedure, it is possible to
identify "error-prone" constructions, but an attempt to Improve languages by
eliminating these seams more an exercise In psychology then mathematics.
Error-disoovery testing is an art, but omputer tools that perform bookkeeping

17

can be invaluable aids in its practice. (Has this statement been tried?
Could this expression be off by 1? Is this assertion true each time through
the loop? Are all the variables assigned values before they are used? Etc.)
Eventually a time comes when no more errors are discovered; at this point the
question arises whether this is only an accident. Formally, is a successful
test reliable [293, i.e., does It guarantee correctness?

A number of concessions have already been made when the question is asked
in this form. To know If a test is a success requires an effective specifica-
tion. It is assumed that the test is completed--that is, the program halts so
that its output can be judged. In practice both of these things may cause a
person considerable trouble in obtaining a successful test. Finally, the re-
liable tests are not to be generated, but only recognized; a person must find
the test values. Despite these concessions, the problem of recognizing a re-
liable test is unsolvable. It is instructive to prove this result in a some-
what peculiar way.

Definition: A test T for program P is a finite set whose members are
suitable inputs for P . T is successful iff P halts on each member as in-
put, with the correct output. T is reliable for P iff

T successful => P correct.

Lemma: A reliable test exists for each program and specification.

Proof: Suppose P is incorrect. Then there is an input x for which the
result does not agree with the specification, and [x} is reliable because it
is not successful, falsifying the antecedent of the definition. On the other
hand, if P is correct, the empty test is reliable, because the consequent of
the definition is true.

Lemma: The problem of deciding whether or not an arbitrary program halts for
no input (the empty-function equivalence problem) is unsolvable.

Proof. Suppose to the contrary that there were an effective way to decide if
programs never halted. Then the usual halting problem could be solved. Given
an arbitrary program P and input x , modify P so that it always appears
to take x as input. (In most languages this can be done by replacing a
READ-statement with an appropriate assignment.) Then P halted on x iff the
modified program is not equivalent to one computing the empty function.

Lemma: The problem of deciding of an arbitrary program P , and its arbitrary
statement C , whether or not C can be executed, (the useless-statement
problem) is unsolvable.

Proof. Suppose there were such an algorithm. Then it could be used to solve
the empty-function equivalence problem as follows. Given any program P , ob-
tain a modified P' by adding a procedure that calls P , followed by any
statement C . Then P computes the empty function Just in case C is never
executed in P'

Theorem: The problem of recognizing reliable tests is unsolvable.

Proof. Suppose to the contrary that there were an algorithm to decide of an
arbitrary T and P whether or not T is reliable for P . Then the
useless-statement problem could be solved as follows. Suppose given an arbi-
trary P and Its statement C . Construct a new program Q by adding a new
variable (say N) to P , with N initially 0. Replace C by

16

C;
N :: 1

and alter the expression E for the output of P to E+N . With these
changes Q will agree with P exactly should C not be executed; otherwise
P and Q will not agree. (Some asumptions about the form of P have been
made, but appropriate changes in the construction can be made if these are
violated.) Now take the input-output behavior of P to be the specification
for Q , and find a reliable test T by trial, since one exists by the first
lemma. If some value In T causes C to be executed, then the same would
have been true for P , and hence C is not useless. On the other hand, if
C remains unexecuted, P and Q agree on T , hence T is successful, and
because It is reliable, Q is correct. That is, P and Q agree every-
where. But that means that C is never executed.

Faced with a proof of this kind, computer-science theory has an option not

available in most other disciplines: it can deny hard facts. Indeed the
useless-statement problem is unsolvable, but since there is no compelling rea-
son to have useless statements in programs, we can Insist that there be none.
And such a requirement can be checked as a part of testing. Suppose then that
the definition of "success" is changed to require that in addition to halting
and correct results, every statement Is executed in the course of a successful
test. (Such a requirement can be checked by simple monitoring of the test ex-
ecutions.) The burden of dealing with undecidability has been placed back on a
human being. With the modified definition, the proof that reliability is
undecidable fails, since the supposed reliability algorithm need apply only to
those programs without useless statements.

An absence of useles3 statements is neither necessary nor sufficient for
test reliability, but they represent an anomaly probably not intended by the
programmer. Calling attention to an apparently useless statement is thus a
helpful bookkeeping device, and should aid in error-discovery testing. (The
error is most llke~y that the test data Is inadequate, and the statement not
in fact useless.) Similarly, other variants of the undecidable-reliability
proof can be invalidated by Insisting on extra test requirements, which can be
incorporated into useful testing tools. The success of these tools rests on
the skill of the programmer using them, however, not on reliability.

The unsolvable problem that really underlies undecidable reliability is
that of program equivalence. It is unreasonable to alter this hard fact of
programming life, because the whole process of subdividing and combining pro-
grams relies on the language properties that lead to an unrecognizable collec-
tion of programs with the same meaning. It may be, however, that attempts to
control the form of equivalent programs might have important consequences for
testing.

"Automatic programing" Is an idea closely allied with decidable reliabil-
ity. Instead of beginning with a program and looking for reliable data, an
automatic programing system begins with data and constructs a program [30J.
That is, automatic programming Is an algorithm for transforming a finite sup-
port, for a specification function f , Into a program that computes f .
Structural requirements on the programs permitted are essential to confidence
that a synthesized program might be what was wanted; for example, to create
programs with useless statements in response to a collection of test data is
obviously silly-what should the content of those statements be? An effective
reliability algorithm could be used as an automatic programing system by gen-
erating programs at random, and testing each against the given finite-support
data for reliability. If a program were found for which this data is reli-
able, it would be acceptable.

19

Test Selection

Test selection methods are all based on dividing the input domain into
equivalence classes defined by program and specification structure. The idea
is that since both of these formal objects are finite, there should be a fin-
ite number of classes, and If Inputs In each class are "treated the same" by
the program ("should be treated the same" according to the specification),
then choosing one element from each intersection of program and specification
classes will yield a reliable test (31, 32]. It is unclear how to define
"treated the same" so as to make this statement provable. For programs and
operational specifications, some natural equivalence classes exist, however.

Path Equivalence classes [33] are the most natural for programs. Two in-
puts are in the same class iff they cause the program to take the same execu-
tion path, a finite sequence of statements from beginning to termination. An
operational specification without process communication has similar path
equivalence classes, but the Intersection of program and specification classes
may refine both. There are two difficulties with path equivalence classes:
(1) loops and recursive procedure calls may give rise to an infinity of paths,
hence an infinite subdivision of the domain, and (2) arbitrary choice of an
element from each class may not yield a reliable test. There is no good solu-
tion to the first problem except to combine all but a finite number of loop-
or recursion-originated path classes, perhaps using some intuition about which
are "the same treatment." A rule of thumb is to group paths into classes
which can be defined by a simple pattern. The Intuitive reason behind diffi-
culty (2) is that inputs that cause execution of the same path are not neces-
sarily treated the same--as a simple example, for a path on which the formula

X/Y

appears, a zero-value for Y is given unique treatment.

To attack this second Intuitive deficiency in path equivalence classes,
computation equivalence classes [34] are defined on a path. These classes are
much less natural than the path classes, but some are:

All inputs that lead to the same output. (Not useful when the path compu-
tation has an infinite range, but the path often precludes this.)

All Inputs that lead to the same execution history. (These are literally
treated the same, but the number of inputs in each class tends to 1.)

All inputs which can detect alterations in a given statement, expression,
variable, etc., in that the result with the alteration would be different.
The intuition behind this idea is that alterations might correct errors in
the program; data In the class detects such errors.

Non-operational specifications may have natural equivalence classes of in-
puts as well. For example, a logic specification given as a conjunction of
conditional assertions has the classes defined by individually satisfying each
conjunct's hypothesis. An algebraic-axiom specification whose representation
mapping is many-one has input classes whose members map to the same (canoni-
cal) word. However, the usefulness of such specification classes depends on
properties of each example, not on the general form as in path and computation
clases for programs.

To define input equivalence classes like those In the single-program Case
for cooperating processes requires supplying the inter-process communication.
The practical expression of this situation arises in the testing of a con-

current system. Following "unit test" of individual processes with communica-

20

iL

tion information supplied at random, the entire system is tried in an "in-
tegration test" where communication is allowed to happen naturally. It is ob-
served that initial integration tests fail so dramatically that it is very
difficult to discover the reasons; that Is, unit tests are not very useful. A
scheme for improving their utility might be the following. (We assume a
slightly more realistic model of parallel computation in which the communica-
tion streams are directed to specific processes.) Unit tests are conducted in
stages. At stage 0, each process is tested using communication inputs gen-
erated at random, and recording the communication outputs. At stage N, the
communication inputs are those produced as outputs in stage N-i, supplied in a
time sequence that makes it equally likely for communication to cause the pro-
gram to wait as to allow it to proceed immediately.

Classes of interest over an entire multi-process program or operational
specification certainly include those in which the computation histories
within processes are fragmented and interleaved in different ways. yet produce
the same output. If those histories are in addition required to be the same,
members of the class are being treated the same 'ip to an irrelevant schedul-
ing. (An operating system is required to behave this way with the user
processes it schedules.) A weaker class (among many) would be those inputs
that cause the same sequence of process activations, without regard for the
computations within them. Practical intuition on which to base natural
equivalence classes is weak for cooperating processes, because disciplined
testing of such systems is seldom attempted.

In the myriad of equivalence classes that can be defined by the several
specification techniques, and the similar breakdown of program inputs, the in-
tuition persists that there must some of finite index for which selecting any
element from each class yields a roliable test. There can be no effective,
general solution to the unsolvable problem of reliability, but solutions of
two kinds might be expected. First, an effective solution might be obtained
by imposing restrictions on the form of programs and specifications. Since
operational specifications of cooperating processes can best tolerate con-
straints, so they seem most promising for the first possibility. Second, a
non-effective solution might be found for the general problem. Equivalence
classes of finite index in the domain, but defined by undecidable semantic
properties, might nevertheless be used in a new proof method. The proof of
reliability would be done by hand, and data found in each class; then, suc-
cessfully executing those tests would prove the program correct.

Two views of testing theory arise from the unsolvability of the effective re-
liability problem. The first is that testing theory should provide new pro-
gram proof techniques in which the computer is helpful, but the character of
the human effort is similar to that of any proof: the necessary ideas are
found in a non-algorithmic way E35J. This view has been presented above. In
the second view, the required theoretical work should be done at a meta level,
so that its results can be incorporated into testing tools for automatic ap-
plication. The use of such tools is like using a compiler for syntax check-
ing. Syntax theory is incorporated in a compiler in such a way that its users
need only read and deal with very specific error messages, and these do not
refer to grammar or parsing theory, yet that theory was needed to devise the
compiler.

An ideal testing tool would have the following character. Its inputs
would be a program, a test, and an effective specification. Its output would
be either a message that the program is correct, or syntax-error-like messages
faulting the program or test or both for failure to be reliable. Existing
test tools have something of this character, except that they use no specifi-
cations, and they cannot produce the "program correct" message. For example,

21U _A

a statement-frequency analyzer identifies never-used statements, which clearly
point to a deficien]j in either the data or the program, and give the clues
necessary to repair them. Existing test tools thus behave ideally when there
are errors, but not when they detect none. There might be three ways to do
better, each requiring theoretical development: (1) restrict the programming
language to one for which the program-equivalence problem is solvable, thus
making reliability effective; (2) weaken the requirements for an ideal test to
establish something less than correctness, yet more than agreement with
specification on the test points; (3) treat the test as an experiment to
predict the outcome of other experiments with a certain degree of confidence.
Each of these ideas will now be considered; (2) and (3) appear more promising.

Programin -language Restrictions

Finite-state transducers have a well-developed reliability theory of ex-
actly the sort we seek for programs: given a bound on the state size, a test
always exists, and can be effectively generated, to distinguish any machine
from any other [36]. Such a "determining" test is therefore reliable, because
only the determined machine can be correct. The state bound is not a problem
in practice, since one has a program that is probably close to correct, and a
rough bound can be taken to be some multiple of its size. Unfortunately,
finite-state-like languages are not much use in practice, but before we con-

sider that difficulty, the determining result can be studied to learn about
reliability.

Suppose a test were reliable, in that a unique finite state transducer is
successful, within a given state bound. That test, and the finite collection
of results to which it leads with the machine it determines, constitutes a
specification, since given the test and results, there is no further need for
an oracle. This is a peculiar situation at odds with intuition. We have a
finite set of input-output pairs that somehow define an infinite set, but do
not describe that infinite set. The best description that can be given is to
determine the machine, and let it (or some form like a regular expression con-
structed from it) be the specification off the reliable test. It is quite
possible that the original specification is at odds with the determined
machine for some untested points, because the required program is not finite
state. Adding any such pair to the test will (perhaps with other additional
points) determine a different machine (perhaps within a larger state bound).

What is interesting in this notion is how the original specification
disappears, and this would happen with any reliable test. Behavior on the
test collection fixes the behavior everywhere, but does not describe it except
with a program. The reliable-test specification has the character: "get
these particular results (finite list); then elsewhere do whatever you must."
A more satisfactory specification that disagrees with this one might arise not
because one of the restrictions is violated, but because of a subtle error in
the reliable test. A mistake there will determine the wrong machine, but it
may show its wrongness much more clearly on some untested point. (This situa-
tion is common in practical program testing, where a reported bug can often be
traced to a test that was failed, but the failure missed or ignored.)

In a deeper sense, finite specifications of the sort established by reli-
able tests may be all that human beings are capable of mastering. That is,
the most natural way of specifying most problems may be to constrain the pro-
grams for the solution, then give an adequate sample of the required behavior.
Most automatic programming systems work in exactly that way, except that the
class of programs they use is less precise than the finite-state class. They
generate programs in a certain form which is a subset of some language, in
response to a finite collection of inputs. Extending the collection generally
results in a different program being generated up to some point, and after

22

that the program does not change. It is of course easy to construct examples

in which this behavior is misleading, but it is difficult to escape the feel-
ing that in most cases these specifications by example and restricted program
are very natural. The difficulty is that when we are misled, the joke is
played out to the end: there is no fault in the process of obtaining a pro-
gram, but it is wrong nevertheless. People seem more comfortable with a dif-
ficult process whose failures can be traced to faulty use, than with processes
whose perfect application nevertheless goes wrong.

Finite-state devices are in one sense the ultimate in so-called "applica-
tive" programming, in that they have no associated data storage. The common
programming device of performing a calculation, then saving the result in a
variable to be used later, after another intervening calculation that is unre-
lated, cannot be used. (So long as the values to be saved constitute a finite
list, a machine exists to perform an equivalent computation, but in the most
unnatural way of making a path choice based on the value that should have been
stored, and on each path duplicating the intervening computation up to the
test point, where the paths begin to differ. The same situation arises in any
applicative language if the "compute-save-compute-retrieve" pattern is fol-
lowed.) The deficiencies of finite-state programming are more serious, howev-
er, because of the tight coupling between the number of states and the memory.
This restriction is one of practice as well as a theoretical limitation, be-
cause not only are some tasks impossible, but approximation to them causes the
needed machine to grow exponentially in state size. (Parenthetically, this

suggests a way to detect that automatic programming is failing: increase the

size of the input, and if the generated program continually grows, it is a
good guess that the answers being supplied are wrong. For example, asked to
recognize balanced parentheses, the finite-state machine determined by finite

tests would never stabilize, since there is no general way to do the problem.)

There is no natural candidate for a language significantly extending

finite-state computing power, for which the reliability problem is solvable.
However, languages with primitive-recursive power [37) have been analyzed with
more success than universal languages: although the program-equivalence prob-

lem is unsolvable, programs always halt.

Between Correctness and Testing

The unsolvable program-equivalence problem is the reason that that reli-
able tests cannot be recognized. Even in universal programming languages, un-
solvable questions can often be decided if "computation behavior" is substi-

tuted for input-output behavior. A program's computation is usually defined
by operational semantics, along the lines used by Turing. A comprehensive

program state is defined, and pieces of program syntax authorize transitions
from one state to another. The sequence of state descriptions beginning with

an initial one that includes the input value and ending with a final one that
includes the output value, each leading to the next according to the program,
is the computation (on that input with that output). The computation function
for a program has the graph given by all such (input, computation) pairs.

(For Turing machines the Kleene normal-form theorem shows that computa-
tions can be recognized using a subrecursive function; this result is typical

of the difference between input-output and input-computation behavior: the

set

1(p, x, y) I program p on input x has output y }

is not recursive; but

Up, x, t) 1 program p on input x has computation t }

23

'1
is primitive recursive.)

Consider then "computational reliability," in which a program's specifica-
tion is a computation function, and "correct" means having that computation
function. Then some reliable tests are recognizable for some programs.

Theorem: There is a universal class of programs C such that each P G C

has a nonempty subset of Its determining tests Tp . for which

R : ((P, T) 1 T G Tp and P G C }

is recursive.

Proof. The Idea of the proof is that a canonical form of any program can be
reconstructed from certain finite samples of its computations. The decision
procedure required must determine whether T and the computations by P on
T is such a sample. Details of the proof depend on the programming language
used, but we outline the case of a language with assignments, conditionals,
and loops, with expressions involving a fixed set of operators. First, any
expression in P is determined by a finite collection of computations, those
sufficient to distinguish all the operators from possible alternatives. It
must, however, be possible to execute each expression with the necessary in-
puts. Assignment statements, conditionals, and loops are then distinguished
by the computational actions following their expression evaluation. For con-
ditionals it must be possible to reach both alternatives, and for loops there
must be a case of zero iterations, and of more than one iteration, to distin-

guish a loop from a conditional. These caveats define the class of programs
C and tests Tp for programs P G C , which is evidently not restricted
enough that any computable function is omitted.

The restrictions on programs and tests in the theorem all have the charac-
ter of "no useless statements," which can be precisely reported when a program
and test are being processed. For example, if statements of the program are
not executed by the test (or executed with too little data to determine their

expressions), the test might still be reliable (if the statements cannot be so
executed at all) but the program and test are not in the recognizable subset
of the theorem. A computer testing system can then produce specific error
messages (e.g., "This expression has not been distinguished from the following
alternatives: ...") and a person must decide if the test is inadequate, or if
the program should be simplified because the unexplored situation cannot oc-
cur.

The idea of "computation" in the theorem can be replaced by other, weaker
ideas at the cost of further restricting the sets of programs and tests that
can be identified as reliable. At some point in the process of moving from
the defining computation to mere input-output behavior, the set of programs
ceases to be universal, which is another aspect of the undecidable reliability
problem. The remarks made about "determining" tests for finite-state machines
apply to computationally reliable tests as well: the test replaces the full
specification, and the off-test behavior Is only implied through the program
thereby determined.

Probabilistic Testing

Quality control for manufactured objects consists of sampling the produc-
tion, testing the sample, and inferring the likelihood that any given Item
will be faulty from the fraction of faulty samples. The success of this pro-
cedure depends on a number of things: (1) Each item Is produced by the same
process, and the introduction of a fault is as likely in one as in another;
(2) The testing is exhaustive, In that no unit can pass the test, yet fall in

246

actual use; (3) The number of samples is large enough. The best analogy in
software testing is that each test of a program is a sample of Its behavior,
and the likelihood of failure in use can be inferred from the fraction of test
failures. It Is evidently true that confidence to be placed in results still
depends on the number of tests; but parallels for assuMptions (1) and (2) are
more difficult to find.

Faults In software do not seem the same as manufacturing flaws because
they are hidden in code in peculiar ways. Although it is an oversimplifica-
tion, suppose a program's faults have fixed textual locations, with a uniform
(or perhaps Poisson) distribution. (The basis for this assumption is that er-
rors arise from loss of intellectual control of program complexity, which is
as likely to occur at one place in the code as another. Certainly such a dis-
tribution is the right assmmption for typographical errors.) Further suppose
that the liklihood of detecting a fault is proportional to the number of test
cases that reach its textual location in execution, with distinct program
states. Test inputs do not explore a program's text uniformly, so even this
very simple model shows that the probability of correctness based on a simple
black-box model [38] are erroneous.

However, probabilistic ideas do offer promise of explaining why it is
beneficial to exercise or cover a program. On the simple model that errors
have a textual distribution, a better estimate of correctness can be based on
how many distinct-path tests have passed through each control point. Since
some program exercising is expensive to perform, it is also reasonable to ex-
amine the likelihood that when some randomly chosen fraction of coverage has
been attained, that it will have exposed faults as effectively as full cover-
age (39].

When software is used, its inputs come from a distribution that is unlike-
ly to be uniform over all possibilities. Hence a model of testing in which
the source of program faults is not considered must draw tests from a similar
distribution. The difficulty is that the operational data profile is not
known for a new application.

Probabilistic theory, as an explanation for why practical test systems
work as well as they do, as a source of new test methods, and as a fundamental
explanatory model of the software testing process, has barely begun to be
used.

25

References

1. B. W. Boem. Software engineering, IEEE Trans. Computers C-25 (Dec.,1976), 1226-1241. I

2. K. L. Heninger, Specifying software requirements for complex systems: new
techniques and their application, IEEE Trans. Software Engineering SE-6 (Jan.,
1980), 2-13.

3. B. H. Liskov and V. Barzins, An appraisal of program specifications, in P.
Wegner et al., eds., Research Directions in Software Technology, MIT Press,
1979, 277-301.

4. W. P. Stevens, G. F. Myers, and L. C. Constantine, Structured design, IBM
Systems J. 13 (1974), 115-139.

5. S. H. Caine and E. K. Gordon, PDL-a tool for software design, Proc. NCC
1975, 271-276.

6. G. J. Myers, The Art of Software Testing, Wiley, 1979.

7. R. L. Glass and R. A. Noiseux, Software Maintenance Guidebook, Prentice-
Hall, 1981.

8. P. Naur, ed., Revised report on the algorithmic language ALGOL 60. CACM 6
(Jan.. 1963), 1-17.

9. F. G. Pagan, Formal Specification of Programming Languages, Prentice-Hall,
1981.

10. A. V. Aho and J. D. Ulluan, Principles of Compiler Design, Addison Wes-
ley, 1977.

11. 2nd ACM SIGSOFT Software Engineering Symposium, Workshop on rapid proto-
typing, Columbia, MD., 1982.

12. D. L. Parnas, A technique for software module specification with exam-
ples, CACM 15 (March, 1972),330-336.

13. L. Robinson and 0. Roubine, SPECIAL-a specification and assertion
language, TR CSL-46, Stanford Research Institute, 1977.

14. B. J. Walker, R. A. Kemmerer, and G. J. Popek, Specification and verifi-
cation of the UCLA UNIX security kernel, CACM 23 (Feb., 1980), 118-131.

15. K. L. Clark, Negation as failure, in H. Gallaire and J. Minker, eds.,
Logic and Data Bases, Plenum Press, 1978, 293-324.

16. J. Guttag and J. Horning, The algebraic specification of abstract data
types, Acta Informatics 10 (1978), 27-52.

17. B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, Abstraction mechan-
isms in CLU, CACM 20 (Aug., 1977), 561-576.

18. E. Mendelson, Introduction to Mathematical Loglc, Van Nostrand, 196
(Section 5.3)

19. J. A. Goguen, J. W. Thatcher, and E. G. Wagner, An Initial algebra ap-
proach to the specification, correctness, and Implementation of abstract data
types, In R. Yeh, ed., Current Trends in Proeraming Methodology, vol. IV,

26

Prentice-Hall, 1978, 80-149.

20. S. Kamin, Final data type specifications: a new data type specification
method, Proc. 7th ACM SYmposium on Principles of Programing Languages, Las
Vegas, 1980, 131-138.

21. D. Musser, Abstract data type specification in the AFFIRM system, Proc.
Specification for Reliable Software, Boston, 1979, 47-57.

22. J. A. Goguen and J. J. Tardo, An Introduction to OBJ: a language for
writing and testing formal algebraic programming specifications, Proc. Specif-
ication for Reliable Software, Boston, 1979, 170-189.

23. P. Zave, The operational approach to requirements specification for em-
bedded systems, Univ. of Md. TR-976, December, 1980.

24. C. A. R. Hoare, Communicating sequential processes, CACM 21 (Aug., 1978),
666-677.

25. N. Wirth, Algorlthms + Data Structures = Programs, Prentice-Hall, 1976.

26. W. E. Riddle et al., Behavior modelling during software design, IEEE
Trans. Software Engineering SE-4 (July, 1978), 283-298.

27. G. Kahn, The semantics of a simple language for parallel processing, IFIP
74, Stockholm, 471-475.

28. R. G. Hamlet, Reliability theory of program testing, Acta Informatica 16
(1981), 31-43.

29. W. E. Howden, Reliability of the path analysis strategy, IEEE Trans.
Software Engineering SE-2 (Sept., 1976), 208-215.

30. P. D. Summers, A methodology for LISP program construction from examples,
JACM 24 (Jan., 1977), 161-175.

31. J. B. Goodenough and S. L. Gerhart, Towards a theory of test data selec-
tion, IEEE Trans. Software Engineering SE-1 (June, 1975), 156-173.

32. E. J. Weyuker and T. J. Ostrand, Theories of program testing and the ap-
plication of revealing subdomains, IEEE Trans. Software Engineering SE-7 (May
1980), 236-246.

33. L. J. White and E. I. Cohen, A domain strategy for computer program test-
ing, IEEE Trans. Software Engineering SE-7 (May 1980), 247-257.

34. R. G. Hamlet, Testing programs with finite sets of data, The Computer J.
20 (1977), 232-237.

35. E. J. Weyuker, Assessing test data adequacy through program inference, to
appear in TOPLAS.

36. Z. Kohavi et al., Machine distinguishing experiments, The Computer J. 16
(May, 1973), 141-147.

37. A. R. Meyer and D. M. Ritchie, The complexity of LOOP programs, Proc.
22nd ACM National Conf., 1967, 465-469.

38. J. W. Duran and J. J. Wiorkowski, Toward models for probabilistic program
correctness, Proo. Software Quality and Assurance Workshop, San Diego, 1978,

27

39-44.

39. S. Pheho, A software quality assurance methodeloey for air force pro-
Jects, MITRE Corp., 1981.

28

FILMED

.- doom

no" r &%Iw

